
Stateflow®

Getting Started Guide

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Stateflow® Getting Started Guide
© COPYRIGHT 2004–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
June 2004 First printing New for Version 6.0 (Release 14)
October 2004 Online only Revised for Version 6.1 (Release 14SP1)
March 2005 Online only Revised for Version 6.2 (Release 14SP2)
September 2005 Online only Revised for Version 6.3 (Release 14SP3)
October 2005 Reprint Version 6.0
March 2006 Second printing Revised for Version 6.4 (Release 2006a)
September 2006 Reprint Version 6.5 (Release 2006b)
March 2007 Online only Rereleased for Version 6.6 (Release 2007a)
September 2007 Third printing Rereleased for Version 7.0 (Release 2007b)
March 2008 Fourth printing Revised for Version 7.1 (Release 2008a)
October 2008 Fifth printing Revised for Version 7.2 (Release 2008b)
March 2009 Sixth printing Revised for Version 7.3 (Release 2009a)
September 2009 Online only Revised for Version 7.4 (Release 2009b)
March 2010 Online only Revised for Version 7.5 (Release 2010a)
September 2010 Online only Revised for Version 7.6 (Release 2010b)
April 2011 Seventh printing Revised for Version 7.7 (Release 2011a)
September 2011 Online only Revised for Version 7.8 (Release 2011b)
March 2012 Online only Revised for Version 7.9 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
October 2015 Online only Rereleased for Version 8.5.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 8.7 (Release 2016a)
September 2016 Online only Revised for Version 8.8 (Release 2016b)
March 2017 Online only Revised for Version 8.9 (Release 2017a)
September 2017 Online only Revised for Version 9.0 (Release 2017b)

Introduction to the Stateflow Product
1

Stateflow Product Description . 1-2
Key Features . 1-2

Anatomy of a Stateflow Chart . 1-3

How Stateflow Software Works with Simulink Software 1-5

Use C Chart to Model Event-Driven System 1-6

Installing Stateflow Software . 1-7
Installation Instructions . 1-7
Prerequisite Software . 1-7
Product Dependencies . 1-8
Set Up Your Own Target Compiler . 1-8
Using Stateflow Software on a Laptop Computer 1-8

Related Products . 1-9

The Stateflow Chart You Will Build
2

The Stateflow Chart . 2-2

How the Stateflow Chart Works with the Simulink Model . . 2-6

A Look at the Physical Plant . 2-7

Running the Model . 2-9

v

Contents

Defining the Interface to the Simulink Model
3

Implementing the Interface with Simulink 3-2
Build It Yourself or Use the Supplied Model 3-2
Design Considerations for Defining the Interface 3-2
Adding a Stateflow Block to a Simulink Model 3-3
Defining the Inputs and Outputs . 3-8
Connecting the Stateflow Block to the Simulink Subsystem . 3-14

Defining the States for Modeling Each Mode of
Operation

4
Implementing the States to Represent Operating Modes . . . 4-2

Build It Yourself or Use the Supplied Model 4-2
Design Considerations for Defining the States 4-2
Adding the Power On and Power Off States 4-6
Adding and Configuring Parallel States 4-8
Adding the On and Off States for the Fans 4-13

Defining State Actions and Variables
5

Implementing State Actions . 5-2
Build It Yourself or Use the Supplied Model 5-2
Design Considerations for Defining State Actions and

Variables . 5-2
Writing an Entry Action . 5-4
Writing a During Action . 5-5

vi Contents

Defining Transitions Between States
6

Adding the Transitions . 6-2
Build It Yourself or Use the Supplied Model 6-2
Design Considerations for Defining Transitions Between

States . 6-2
Drawing the Transitions Between States 6-4
Adding Default Transitions . 6-7
Adding Conditions to Guard Transitions 6-10
Adding Events to Guard Transitions 6-11

Triggering a Stateflow Chart
7

Implementing the Triggers . 7-2
Build It Yourself or Use the Supplied Model 7-2
Design Considerations for Triggering Stateflow Charts 7-2
Defining the CLOCK Event . 7-3
Connecting the Edge-Triggered Events to the Input

Signals . 7-4

Simulating the Chart
8

Setting Simulation Parameters and Breakpoints 8-2
Prepare the Chart Yourself or Use the Supplied Model 8-2
Checking That Your Chart Conforms to Best Practices 8-2
Setting the Length of the Simulation 8-3
Configuring Animation for the Chart 8-4
Setting Breakpoints to Observe Chart Behavior 8-5
Simulating the Air Controller Chart . 8-5

vii

Debugging the Chart
9

Debugging Common Modeling Errors 9-2
Debugging State Inconsistencies . 9-2
Debugging Data Range Violations . 9-4

viii Contents

Introduction to the Stateflow Product

This chapter describes Stateflow event-based modeling software and its components.

• “Stateflow Product Description” on page 1-2
• “Anatomy of a Stateflow Chart” on page 1-3
• “How Stateflow Software Works with Simulink Software” on page 1-5
• “Use C Chart to Model Event-Driven System” on page 1-6
• “Installing Stateflow Software” on page 1-7
• “Related Products” on page 1-9

1

Stateflow Product Description
Model and simulate decision logic using state machines and flow charts

Stateflow is an environment for modeling and simulating combinatorial and sequential
decision logic based on state machines and flow charts. Stateflow lets you combine
graphical and tabular representations, including state transition diagrams, flow charts,
state transition tables, and truth tables, to model how your system reacts to events, time-
based conditions, and external input signals.

With Stateflow you can design logic for supervisory control, task scheduling, and fault
management applications. Stateflow includes state machines animation and static and
run-time checks for testing design consistency and completeness before implementation.

Key Features
• Modeling environment, graphical components, and simulation engine for modeling

and simulating complex logic
• Deterministic execution semantics with hierarchy, parallelism, temporal operators,

and events
• State diagrams, state transition tables, and state transition matrices representing

finite state machines
• Flow charts, MATLAB® functions, and truth tables for representing algorithms
• State diagram animation, state activity logging, data logging, and integrated

debugging for analyzing the design and detecting runtime errors
• Static and run-time checks for cyclic problems, state inconsistencies, data-range

violations, and overflow conditions
• Mealy and Moore finite-state machines

1 Introduction to the Stateflow Product

1-2

Anatomy of a Stateflow Chart
Here is an example of a Stateflow chart, which models as a finite-state machine the logic
required to shift gears in an automatic transmission system of a car:

Notice the following details in this chart:

• Each gear and shift position is represented by a state.
• States having a dashed boundary, such as gear_state and selection_state, are

parallel (can be active concurrently).
• States with a solid boundary, such as first, second, third and fourth, are

exclusive (only one can be active at a time).
• Transitions can be triggered by events and conditions.

 Anatomy of a Stateflow Chart

1-3

• Directed-event broadcasts, such as UP and DOWN, trigger selective execution of chart
logic.

This chart is part of an example model called sf_car that ships with the Stateflow
product. To explore the model further, open it by typing sf_car at the command prompt
in the MATLAB Command Window.

1 Introduction to the Stateflow Product

1-4

How Stateflow Software Works with Simulink Software

Stateflow charts run as blocks in a Simulink model. The Stateflow block interfaces with
other blocks in the model using input and output signals. Through these connections,
Stateflow and Simulink software share data and respond to events that broadcast
between model and chart. For example, the Stateflow shift_logic block is integrated
with the Simulink sf_car model as shown.

You can develop your Stateflow chart before or after the Simulink model in which it will
run. Stateflow software comes with its own editor, which helps you simulate and test the
chart logic before you integrate it with a Simulink model. You can test a Stateflow chart
independently of its parent model by attaching a Source block as an input and a Sink
block as an output. During simulation, you can animate the chart to get visual feedback
about its run-time behavior.

 How Stateflow Software Works with Simulink Software

1-5

Use C Chart to Model Event-Driven System

Before you start building a chart, you identify system attributes by answering these
questions:

1 What are your interfaces?

a What are the event triggers to which your system reacts?
b What are the inputs to your system?
c What are the outputs from your system?

2 Does your system have any operating modes?

a If the answer is yes, what are the operating modes?
b Between which modes can you transition? Are there any operating modes that

can run in parallel?

If your system has no operating modes, the system is stateless. If your system has
operating modes, the system is modal.

After identifying your system attributes, you can follow a basic workflow for building
Stateflow charts to model event-driven systems:

1 Define the interface to Simulink on page 3-2.
2 Define the states for modeling each mode of operation on page 4-2.
3 Define state actions and variables on page 5-2.
4 Define the transitions between states on page 6-2.
5 Decide how to trigger the chart on page 7-2.
6 Simulate the chart on page 8-2.
7 Debug the chart on page 9-2.

1 Introduction to the Stateflow Product

1-6

Installing Stateflow Software

In this section...
“Installation Instructions” on page 1-7
“Prerequisite Software” on page 1-7
“Product Dependencies” on page 1-8
“Set Up Your Own Target Compiler” on page 1-8
“Using Stateflow Software on a Laptop Computer” on page 1-8

Installation Instructions

Stateflow software runs on Windows® and UNIX® operating systems. Your MATLAB
installation documentation provides all the information you need to install Stateflow
software. Before installing the product, you must obtain and activate a license (see
instructions in your MATLAB installation documentation) and install prerequisite
software (see “Prerequisite Software” on page 1-7 for a complete list).

Prerequisite Software

Before installing Stateflow software, you need the following products:

• MATLAB
• Simulink
• C or C++ compiler supported by the MATLAB technical computing environment

The compiler is required for compiling code generated by Stateflow software for
simulation.

The 64–bit Windows version of the Stateflow product comes with a default C compiler,
LCC-win64. LCC-win64 is used for simulation and acceleration. LCC-win64 is only
used when another compiler has not been configured in MATLAB.

Note The LCC-win64 compiler is not available as a general compiler for use with the
command line MEX in MATLAB. It is a C compiler only, and cannot be used for
SIL/PIL modes.

 Installing Stateflow Software

1-7

For platforms other than Microsoft® Windows or to install a different compiler, see
“Set Up Your Own Target Compiler” on page 1-8.

Product Dependencies

For information about product dependencies and requirements, see System
Requirements.

Set Up Your Own Target Compiler

If you have multiple compilers that MATLAB supports on your system, MATLAB selects
one as your default compiler. You can change the default compiler by calling the mex –
setup command, and following the instructions. For a list of supported compilers, see
www.mathworks.com/support/compilers/current_release/.

Note If you are using Microsoft Visual C++® 2010 Professional (or earlier) or Windows
SDK 7.1, the generated C code cannot contain any C structure greater than 2 GB. In a
single chart, do not use data with an aggregate size greater than 2 GB or 400 MB with
debugging enabled.

Using Stateflow Software on a Laptop Computer

If you plan to run the Microsoft Windows version of the Stateflow product on a laptop
computer, you should configure the Windows color palette to use more than 256 colors.
Otherwise, you may experience unacceptably slow performance.

To set the Windows graphics palette:

1 Click the right mouse button on the Windows desktop to display the desktop menu.
2 Select Properties from the desktop menu to display the Windows Display

Properties dialog box.
3 Select the Settings panel on the Display Properties dialog box.
4 Choose a setting that is more than 256 colors and click OK.

1 Introduction to the Stateflow Product

1-8

https://www.mathworks.com/products/availability.html#SF
https://www.mathworks.com/products/availability.html#SF
https://www.mathworks.com/support/compilers/current_release/

Related Products
Several MathWorks® products extend the capabilities of Stateflow software. For
information about these related products, see www.mathworks.com/products/
stateflow/related.htm.

 Related Products

1-9

http://www.mathworks.com/products/stateflow/related.html
http://www.mathworks.com/products/stateflow/related.html

The Stateflow Chart You Will Build

To get hands-on experience using Stateflow software, you will build a Stateflow chart in
incremental steps that follow the basic workflow described in “Use C Chart to Model
Event-Driven System” on page 1-6. To give you a context for your development efforts,
this chapter describes the purpose and function of the chart you will build and explains
how it interfaces with a Simulink model. You will also learn how to run a completed
version of the model from the MATLAB command line.

• “The Stateflow Chart” on page 2-2
• “How the Stateflow Chart Works with the Simulink Model” on page 2-6
• “A Look at the Physical Plant” on page 2-7
• “Running the Model” on page 2-9

2

The Stateflow Chart
You will build a Stateflow chart that maintains air temperature at 120 degrees in a
physical plant. The Stateflow controller operates two fans. The first fan turns on if the
air temperature rises above 120 degrees and the second fan provides additional cooling if
the air temperature rises above 150 degrees. When completed, your Stateflow chart
should look something like this:

As you can see from the title bar, the chart is called Air Controller and is part of a
Simulink model called sf_aircontrol. When you build this chart, you will learn how to
work with the following elements of state-transition charts:

Exclusive (OR) states. States that represent mutually exclusive modes of operation.
No two exclusive (OR) states can ever be active or execute at the same time. Exclusive
(OR) states are represented graphically by a solid rectangle:

2 The Stateflow Chart You Will Build

2-2

The Air Controller chart contains six exclusive (OR) states:

• PowerOn
• PowerOff
• FAN1.On
• FAN1.Off
• FAN2.On
• FAN2.Off

Parallel (AND) states. States that represent independent modes of operation. Two or
more parallel (AND) states at the same hierarchical level can be active concurrently,
although they execute in a serial fashion. Parallel (AND) states are represented
graphically by a dashed rectangle with a number indicating execution order:

The Air Controller chart contains three parallel (AND) states:

• FAN1
• FAN2
• SpeedValue

Transitions. Graphical objects that link one state to another and specify a direction
of flow. Transitions are represented by unidirectional arrows:

The Air Controller chart contains six transitions, from

 The Stateflow Chart

2-3

• PowerOn to PowerOff
• PowerOff to PowerOn
• FAN1.On to FAN1.Off
• FAN1.Off to FAN1.On
• FAN2.On to FAN2.Off
• FAN2.Off to FAN2.On

Default transitions. Graphical objects that specify which exclusive (OR) state is to
be active when there is ambiguity between two or more exclusive (OR) states at the same
level in the hierarchy. Default transitions are represented by arrows with a closed tail:

The Air Controller chart contains default transitions:

• At the chart level, the default transition indicates that the state PowerOff is
activated (wakes up) first when the chart is activated.

• In the FAN1 and FAN2 states, the default transitions specify that the fans be powered
off when the states are activated.

State actions. Actions executed based on the status of a state.

The Air Controller chart contains two types of state actions:

• entry (en) action in the PowerOff state. Entry actions are executed when the state
is entered (becomes active).

• during (du) action in the SpeedValue state. During actions are executed for a state
while it is active and no valid transition to another state is available.

Other types of state actions

There are other types of state actions besides entry and during, but they involve
concepts that go beyond the scope of this guide. For more information, see “Syntax for
States and Transitions”.

Conditions. Boolean expressions that allow a transition to occur when the expression
is true. Conditions appear as labels for the transition, enclosed in square brackets ([]).

2 The Stateflow Chart You Will Build

2-4

The Air Controller chart provides conditions on the transitions between FAN1.On and
FAN1.Off, and between FAN2.On and FAN2.Off, based on the air temperature of the
physical plant at each time step.

Events. Objects that can trigger a variety of activities, including:

• Waking up a Stateflow chart
• Causing transitions to occur from one state to another (optionally in conjunction with

a condition)
• Executing actions

The Air Controller chart contains two edge-triggered events:

• CLOCK wakes up the Stateflow chart at each rising or falling edge of a square wave
signal.

• SWITCH allows transitions to occur between PowerOff and PowerOn at each rising or
falling edge of a pulse signal.

 The Stateflow Chart

2-5

How the Stateflow Chart Works with the Simulink Model
The Stateflow chart you will build appears as a block named Air Controller that is
connected to the model of a physical plant in the Simulink sf_aircontrol model. Here
is the top-level view of the model:

The Simulink model passes the temperature of the plant as an input temp to the
Stateflow Air Controller block. Based on the temperature of the plant, the controller
activates zero, one, or two fans, and passes back to the model an output value airflow
that indicates how fast the air is flowing. The amount of cooling activity depends on the
speed of the fans. As air flows faster, cooling activity increases. The model uses the value
of airflow to simulate the effect of cooling when it computes the air temperature in the
plant over time. You will learn more about these design elements in “Interface with
Simulink”.

The Signal Builder block in the Simulink model sends a square wave signal (CLOCK) to
wake up the Stateflow chart at regular intervals and a pulse signal (SWITCH) to cycle the
power on and off for the control system modeled by the Stateflow chart. You will learn
more about these design elements in “Implementing the Triggers” on page 7-2.

2 The Stateflow Chart You Will Build

2-6

A Look at the Physical Plant
Simulink software models the plant using a subsystem called Physical Plant, which
contains its own group of Simulink blocks. The subsystem provides a graphical hierarchy
for the blocks that define the behavior of the Simulink model. The inputs, airflow speed
and ambient temperature, model the effects of the controller activity on plant
temperature. Here is a look inside the Physical Plant subsystem:

In this model, the internal temperature of the plant attempts to rise to achieve steady
state with the ambient air temperature, set at a constant 160 degrees (as shown in “How
the Stateflow Chart Works with the Simulink Model” on page 2-6). The rate at which the
internal temperature rises depends in part on the degree of thermal isolation in the plant
and the amount of cooling activity.

Thermal isolation measures how much heat flows into a closed structure, based on
whether the structure is constructed of materials with insulation or conduction
properties. Here, thermal isolation is represented by a Gain block, labeled Thermal
Isolation. The Gain block provides a constant multiplier that is used in calculating the
temperature in the plant over time.

Cooling activity is modeled using a constant multiplier, derived from the value of
airflow, an output from the Stateflow chart. The chart assigns airflow one of three
cooling factors, each a value that serves as an index into a multiport switch. Using this

 A Look at the Physical Plant

2-7

index, the multiport switch selects a cooling activity multiplier that is directly
proportional to the cooling factor, as follows:
Cooling Factor
(Value of Airflow)

What It Means Cooling Activity

0 No fans are running. The value of temp
is not lowered.

0

1 One fan is running. The value of temp is
lowered by the cooling activity
multiplier.

-0.05

2 Two fans are running. The value of temp
is lowered by the cooling activity
multiplier.

-0.1

Over time, the subsystem calculates the cooling effect inside the plant, taking into
account thermal isolation and cooling activity. The cooling effect is the time-derivative of
the temperature and is the input to the Integrator block in the Physical Plant subsystem.
Let the variable temp_change represent the time derivative of temperature. Note that
temp_change can be a warming or cooling effect, depending on whether it is positive or
negative, based on this equation:
temp_change = ambient temp(())- * (thermal isolation multiplier)) (()))+ - * (ambient temp cooling factor

The Integrator block computes its output temp from the input temp_change, as follows:

temp t temp change t dt() _ ()= + 70

t

t

0

Ú

Note In this model, the initial condition of the Integrator block is 70 degrees.

temp is passed back to the Stateflow Air Controller chart to determine how much cooling
is required to maintain the ideal plant temperature.

2 The Stateflow Chart You Will Build

2-8

Running the Model
To see how the sf_aircontrol model works, you can run a completed, tested version,
which includes the Stateflow chart you will build. Here's how to do it:

1 Start MATLAB software.

If you need instructions, consult your MATLAB documentation.
2 Type sf_aircontrol at the command line.

This command starts Simulink software and opens the sf_aircontrol model:

3 Double-click the Air Controller block to open the Stateflow chart.
4 Double-click the Scope block to display the changes in temperature over time as the

model runs.

 Running the Model

2-9

Tip Position the Air Controller chart and the Scope window so they are both visible
on your desktop.

5 Start simulation in the Air Controller chart by selecting Simulation > Run.

As the simulation runs, the chart becomes active (wakes up) in the PowerOff state.
Notice in the Scope that until PowerOn becomes active, the temperature rises
unchecked. After approximately 350 seconds into the simulation, a rising edge signal
switches power on and the fans become active.

Note Simulation time can be faster than elapsed time.

When the temperature rises above 120 degrees, FAN1 cycles on. When the
temperature exceeds 150 degrees, FAN2 cycles on to provide additional cooling.
Ultimately, FAN1 succeeds in maintaining the temperature at 120 degrees until a
falling edge signal switches power off again at 500 seconds. Then, the temperature
begins to rise again.

The Scope captures the temperature fluctuations:

2 The Stateflow Chart You Will Build

2-10

Stopping or pausing simulation

You can stop or pause simulation at any time.

 Running the Model

2-11

• To stop simulation, select Simulation > Stop.
• To pause simulation, select Simulation > Pause.

6 Close the model.

Where to go next. Now you are ready to start building the Air Controller chart.
Begin at phase 1 of the workflow: “Implementing the Interface with Simulink” on page 3-
2.

2 The Stateflow Chart You Will Build

2-12

Defining the Interface to the Simulink
Model

5
Decide how to

trigger the chart

4
Define the
transitions

between states

6
Simulate
the chart

7
Debug

the chart

2
Define the states
for modeling each
mode of operation

1
Define the
interface

to Simulink

3
Define

state actions
and variables

In phase 1 of this workflow, you define the interface to the Simulink model.

3

Implementing the Interface with Simulink

In this section...
“Build It Yourself or Use the Supplied Model” on page 3-2
“Design Considerations for Defining the Interface” on page 3-2
“Adding a Stateflow Block to a Simulink Model” on page 3-3
“Defining the Inputs and Outputs” on page 3-8
“Connecting the Stateflow Block to the Simulink Subsystem” on page 3-14

Build It Yourself or Use the Supplied Model

To implement the interface yourself, work through the exercises in this section.
Otherwise, open the supplied model by entering this command at the MATLAB prompt:
addpath(fullfile(docroot, 'toolbox', 'stateflow', 'gs', 'examples'))
Stage1Interface

Design Considerations for Defining the Interface

The following sections describe the rationale for the input and output of the Stateflow
chart.

Inputs Required from Simulink Model

Type of Input. Temperature of the physical plant

Rationale. The purpose of the chart is to control the air temperature in a physical
plant. The goal is to maintain an ideal temperature of 120 degrees by activating one or
two cooling fans if necessary. The chart must check the plant temperature over time to
determine the amount of cooling required.

Properties of Input. The properties of the temperature input are as follows:
Property Value
Name temp
Scope Input
Size Inherit from Simulink input signal for compatibility

3 Defining the Interface to the Simulink Model

3-2

Property Value
Data type Inherit from Simulink input signal for compatibility
Port 1

Outputs Required from Stateflow Chart

Type of Output. Speed of airflow, based on how many fans are operating

Rationale. When the Simulink subsystem determines the temperature of the physical
plant over time, it needs to account for the speed of the airflow. Airflow speed is directly
related to the amount of cooling activity generated by the fans. As more fans are
activated, cooling activity increases and air flows faster. To convey this information, the
Stateflow chart outputs a value that indicates whether 0, 1, or 2 fans are running. The
Simulink subsystem uses this value as an index into a multiport switch, which outputs a
cooling activity value, as described in “A Look at the Physical Plant” on page 2-7.

Properties of Output. The properties of the airflow output are as follows:
Property Value
Name airflow
Scope Output
Data type 8-bit unsigned integer (uint8)

(The values can be only 0, 1, or 2.)
Port 1

Adding a Stateflow Block to a Simulink Model

To begin building your Stateflow chart, you will add a Stateflow block to a partially built
Simulink model called sf_aircontrol_exercise, which contains the Physical Plant
subsystem, described in “A Look at the Physical Plant” on page 2-7.

To add a Stateflow block to an existing Simulink model:

1 Open the Simulink model by typing sf_aircontrol_exercise at the MATLAB
command prompt.

The model opens on your desktop:

 Implementing the Interface with Simulink

3-3

The model is incomplete because it does not include the Stateflow chart that you will
build as you work through the exercises in this guide. Instead, the model contains
several nonfunctional blocks: the Terminator, Inport, and Annotation blocks.

2 Delete the nonfunctional blocks and their connectors.

Tip Hold down the Shift key to select multiple objects, and then press Delete.

Your model should now look like this:

3 Defining the Interface to the Simulink Model

3-4

3 Save the model as Stage1Interface:

a Create a new local folder for storing your working model.
b In the Simulink model window, select File > Save As.
c Navigate to the new folder.
d Enter Stage1Interface as the file name.
e Leave the default type as Simulink Models.
f Click Save.

4 On the toolbar of the Simulink model, click the Library Browser icon:

The Simulink Library Browser opens on your desktop:

 Implementing the Interface with Simulink

3-5

5 Add the Stateflow Chart block to the Simulink model:

a In the left scroll pane of the Library Browser, select Stateflow.
b Drag the first block, called Chart, into your model.

The model should now look like this:

3 Defining the Interface to the Simulink Model

3-6

6 Click the label Chart under the Stateflow block and rename it Air Controller.
7 Change the action language of the chart to C:

a Double-click the block to open the chart.
b Right click in an empty area of the chart and select Properties.
c From the Action Language box, select C.
d Select OK.

Shortcut for adding a Stateflow block to a new Simulink model

At the MATLAB command prompt, enter this command:

sfnew

 Implementing the Interface with Simulink

3-7

A new, untitled Simulink model opens on your desktop, automatically configured with a
Stateflow chart. For more information, see sfnew.

Defining the Inputs and Outputs

Inputs and outputs are data elements in a Stateflow chart that interact with the parent
Simulink model. To define inputs and outputs for your chart, follow these steps:

1 Double-click the Air Controller block in the Simulink model Stage1Interface to
open the Stateflow chart.

The Stateflow Editor opens on your desktop:

3 Defining the Interface to the Simulink Model

3-8

2 Add a data element to hold the value of the temperature input from the Simulink
model:

a In the editor menu, select Chart > Add Inputs & Outputs > Data Input
From Simulink.

The Data properties dialog box opens on your desktop with the General tab
selected:

 Implementing the Interface with Simulink

3-9

The default values in the dialog box depend on the scope — in this case, a data
input.

b In the Name field, change the name of the data element to temp.
c Leave the following fields at their default values in the General tab because

they meet the design requirements:

3 Defining the Interface to the Simulink Model

3-10

Field Default Value What It Means
Scope Input Input from Simulink model. The data

element gets its value from the
Simulink signal on the same input port.

Size -1 The data element inherits its size from
the Simulink signal on the same port.

Complexity Off The data element does not contain any
complex values.

Type Inherit: Same as
Simulink

The data element inherits its data type
from the Simulink signal on the same
output port.

Note Ports are assigned to inputs and outputs in the order they are created.
Because temp is the first input you created, it is assigned to input port 1.

d In the General tab, select Add to watch window.

The Stateflow Breakpoints and Watch window lets you examine the value of
temp during breakpoints in simulation. You will try this in “Setting Simulation
Parameters and Breakpoints” on page 8-2.

e Click OK to apply the changes and close the dialog box.
3 Add a data element to hold the value of the airflow output from the Air Controller

chart:

a In the editor menu, select Chart > Add Inputs & Outputs > Data Output To
Simulink.

The Data properties dialog box opens on your desktop, this time with different
default values, associated with the scope Output:

 Implementing the Interface with Simulink

3-11

Note Because airflow is the first output you created, it is assigned to output
port 1.

b In the Name field of the Data properties dialog box, change the name of the
data element to airflow.

c In the Type field, select uint8 (8-bit unsigned integer) from the submenu.

3 Defining the Interface to the Simulink Model

3-12

d Look at the Initial value field.

The initial value is a blank expression, which indicates a default value of zero,
based on the data type. This value is consistent with the model design, which
specifies that no fans are running when the chart wakes up for the first time.

e Make the following changes for other properties in the General tab:
Property What to Specify
Limit range Enter 0 for Minimum and 2 for Maximum.
Add to watch
window

Select this to add airflow to the Watch tab of the
Stateflow Breakpoints and Watch window.

f Click OK to apply the changes and close the dialog box.
4 Go back to the Simulink model by clicking the up-arrow button in the Stateflow

Editor toolbar.

Notice that the input temp and output airflow have been added to the Stateflow
block:

 Implementing the Interface with Simulink

3-13

Tip You might need to enlarge the Air Controller block to see the input and output
clearly. To change the size of the block:

a Select the block and move your pointer over one of the corners until it changes to
this shape:

b Hold down the left mouse button and drag the block to the desired size.

5 Save Stage1Interface.

Tip There are several ways to add data objects to Stateflow charts. You used the
Stateflow Editor, which lets you add data elements to the Stateflow chart that is open
and has focus. However, to add data objects not just to a chart, but anywhere in the
Stateflow design hierarchy, you can use a tool called the Model Explorer. This tool also
lets you view and modify the data objects you have already added to a chart. For more
information, see “Stateflow Hierarchy of Objects” and “Add Data Through the Model
Explorer” in the Stateflow User's Guide. You can also add data objects programmatically
using the Stateflow API, as described in “Create Stateflow Objects” in the Stateflow API
Guide.

Connecting the Stateflow Block to the Simulink Subsystem
Now that you have defined the inputs and outputs for the Stateflow Air Controller block,
you need to connect them to the corresponding signals of the Simulink Physical Plant
subsystem. Follow these steps:

1 In the model Stage1Interface, connect the output airflow from Air Controller to
the corresponding input in Physical Plant:

a Place your pointer over the output port for airflow on the right side of the Air
Controller block.

The pointer changes in shape to crosshairs.
b Hold down the left mouse button and move the pointer to the input port for

airflow on the left side of the Physical Plant block.
c Release the mouse.

The connection should look something like this:

3 Defining the Interface to the Simulink Model

3-14

Tip You can use a shortcut for automatically connecting blocks. Select the source
block, and then hold down the Ctrl key and left-click the destination block.

2 Connect the output temp from the Physical Plant to the corresponding input in Air
Controller by drawing a branch line from the line that connects temp to the Scope:

a Place your pointer on the line where you want the branch line to start.
b While holding down the Ctrl key, press and hold down the left mouse button.
c Drag your pointer to the input port for temp on the left side of the Air Controller

block.
d Release the mouse button and the Ctrl key.
e Reposition the connection so that it looks like this:

 Implementing the Interface with Simulink

3-15

Tip To reposition connections, move your cursor over the end of the line. When
the cursor changes to a circle, select the end of the line with the left mouse
button and drag the line to a new location.

3 Save Stage1Interface.

Where to go next. Now you are ready to model the operating modes with states. See
“Implementing the States to Represent Operating Modes” on page 4-2.

3 Defining the Interface to the Simulink Model

3-16

Defining the States for Modeling Each
Mode of Operation

5
Decide how to

trigger the chart

4
Define the
transitions

between states

6
Simulate
the chart

7
Debug

the chart

2
Define the states
for modeling each
mode of operation

1
Define the
interface

to Simulink

3
Define

state actions
and variables

In phase 2 of this workflow, you define the states for modeling each mode of operation.

4

Implementing the States to Represent Operating Modes

In this section...
“Build It Yourself or Use the Supplied Model” on page 4-2
“Design Considerations for Defining the States” on page 4-2
“Adding the Power On and Power Off States” on page 4-6
“Adding and Configuring Parallel States” on page 4-8
“Adding the On and Off States for the Fans” on page 4-13

Build It Yourself or Use the Supplied Model

To implement the states yourself, work through the exercises in this section. Otherwise,
open the supplied model by entering this command at the MATLAB prompt:
addpath(fullfile(docroot, 'toolbox', 'stateflow', 'gs', 'examples'))
Stage2States

Design Considerations for Defining the States

The following sections describe the rationale for the hierarchy and decomposition of
states in the chart.

When to Use States

Whether or not to use states depends on the control logic you want to implement. You
can model two types of control logic: finite state machines and stateless flow charts. Each
type is optimized for different applications, as follows:
Control Logic Optimized for Modeling
Finite state machines Physical systems that transition between a finite number of

operating modes. In Stateflow charts, you represent each mode
as a state.

Stateless flow charts Abstract logic patterns — such as if, if-else, and case
statements — and iterative loops — such as for, while, and do
loops. You represent these logic constructs with connective
junctions and transitions in Stateflow charts. No states are
required. See “Decision Logic”.

4 Defining the States for Modeling Each Mode of Operation

4-2

The Air Controller chart is a system that cools a physical plant by transitioning between
several modes of operation and, therefore, can be modeled as a finite state machine. In
the following sections, you will design the states that model each mode of operation.

Determining the States to Define

States model modes of operation in a physical system. To determine the number and type
of states required for your Air Controller chart, you must identify each mode in which the
system can operate. Often, a table or grid is helpful for analyzing each mode and
determining dependencies between modes.
Analysis of Operating Modes

For Air Controller, the modes of operation are
Operating Mode Description Dependencies
Power Off Turns off all power in the

control system
No fan can operate when power is off.

Power On Turns on all power in the
control system

Zero, one, or two fans can operate
when power is on.

Fan 1 Activates Fan 1 Fan 1 can be active at the same time
as Fan 2. When activated, Fan 1 can
turn on or off.

Fan 1 On Cycles on Fan 1 Fan 1 On can be active if Fan 1 is
active and power is on.

Fan 1 Off Cycles off Fan 1 Fan 1 Off can be active if Fan 1 is
active, and power is on.

Fan 2 Activates Fan 2 Fan 2 can be active at the same time
as Fan 1. When activated, Fan 2 can
turn on or off.

Fan 2 On Cycles on Fan 2 Fan 2 On can be active if Fan 2 is
active and power is on.

Fan 2 Off Cycles off Fan 2 Fan 2 Off can be active if Fan 2 is
active and power is on.

 Implementing the States to Represent Operating Modes

4-3

Operating Mode Description Dependencies
Calculate airflow Calculates a constant value

of 0, 1, or 2 to indicate how
fast air is flowing. Outputs
this value to the Simulink
subsystem for selecting a
cooling factor.

Calculates the constant value, based
on how many fans have cycled on at
each time step.

Number of States to Define

The number of states depends on the number of operating modes to be represented. In
“Analysis of Operating Modes” on page 4-3, you learned that the Air Controller chart has
nine operating modes. Therefore, you need to define nine states to model each mode.
Here are the names you will assign to the states that represent each operating mode in
“Implementing the States to Represent Operating Modes” on page 4-2:
State Name Operating Mode
PowerOff Power Off
PowerOn Power On
FAN1 Fan 1
FAN2 Fan 2
SpeedValue Calculate airflow
FAN1.On Fan 1 On
FAN1.Off Fan 1 Off
FAN2.On Fan 2 On
FAN2.Off Fan 2 Off

Note Notice the use of dot notation to refer to the On and Off states for FAN1 and FAN2.
You use namespace dot notation to give objects unique identifiers when they have the
same name in different parts of the chart hierarchy.

Determining the Hierarchy of States

Stateflow objects can exist in a hierarchy. For example, states can contain other states —
referred to as substates — and, in turn, can be contained by other states — referred to as
superstates. You need to determine the hierarchical structure of states you will define for

4 Defining the States for Modeling Each Mode of Operation

4-4

the Air Controller chart. Often, dependencies among states imply a hierarchical
relationship — such as parent to child — between the states.

Based on the dependencies described in “Analysis of Operating Modes” on page 4-3, here
is an analysis of state hierarchy for the Air Controller chart:
Dependent States Implied Hierarchy
FAN1 and FAN2 depend on PowerOn. No fan
can operate unless PowerOn is active.

FAN1 and FAN2 should be substates of a
PowerOn state.

FAN1.On and FAN1.Off depend on Fan1
and PowerOn. FAN1 must be active before
it can be cycled on or off.

FAN1 should have two substates, On and
Off. In this hierarchical relationship, On
and Off will inherit from FAN1 the
dependency on PowerOn.

FAN2.On and FAN2.Off depend on FAN2
and PowerOn. FAN2 must be active before
it can be cycled on or off.

FAN2 should have two substates, On and
Off. In this hierarchical relationship, On
and Off will inherit from FAN2 the
dependency on PowerOn.

The state that calculates airflow needs to
know how many fans are running at each
time step.

The state that calculates airflow should be
a substate of PowerOn so it can check the
status of FAN1 and FAN2 at the same level
of hierarchy.

Determining the Decomposition of States

The decomposition of a state dictates whether its substates execute exclusively of each
other — as exclusive (OR) states — or can be activated at the same time — as parallel
(AND) states. No two exclusive (OR) states can ever be active at the same time, while any
number of parallel (AND) states can be activated concurrently.

The Air Controller chart requires both types of states. Here is a breakdown of the
exclusive (OR) and parallel (AND) states required for the Stateflow chart:
State Decomposition Rationale
PowerOff,
PowerOn

Exclusive (OR)
states

The power can never be on and off at the same
time.

FAN1, FAN2 Parallel (AND)
states

Zero, one, or two fans can operate at the same
time, depending on how much cooling is
required.

 Implementing the States to Represent Operating Modes

4-5

State Decomposition Rationale
FAN1.On,
FAN1.Off

Exclusive (OR)
states

Fan 1 can never be on and off at the same
time.

FAN2.On,
FAN2.Off

Exclusive (OR)
states

Fan 2 can never be on and off at the same
time.

SpeedValue Parallel (AND)
state

SpeedValue is an observer state that
monitors the status of Fan 1 and Fan 2,
updating its output based on how many fans
are operating at each time step. SpeedValue
must be activated at the same time as Fan 1
and Fan 2, but execute last so it can capture
the most current status of the fans.

Adding the Power On and Power Off States
When you add states to the Air Controller chart, you will work from the top down in the
Stateflow hierarchy. As you learned in “Determining the Decomposition of States” on
page 4-5, the PowerOff and PowerOn states are exclusive (OR) states that turn power off
and on in the control system. These states are never active at the same time. By default,
states are exclusive (OR) states, represented graphically as rectangles with solid borders.

To add PowerOn and PowerOff to your chart, follow these steps:

1 Open the model Stage1Interface — either the one you created in the previous
exercise or the supplied model for stage 1.

To open the supplied model, enter the following command at the MATLAB prompt:
addpath(fullfile(docroot, 'toolbox', 'stateflow', 'gs', 'examples'))
Stage1Interface

2 Save the model as Stage2States in your local work folder.
3 In Stage2States, double-click the Air Controller block to open the Stateflow chart.

The Stateflow Editor for Air Controller opens on your desktop. Notice the object
palette on the left side of the editor window. This palette displays a set of tools for
drawing graphical chart objects, including states:

4 Left-click the state tool icon:

4 Defining the States for Modeling Each Mode of Operation

4-6

5 Move your pointer into the drawing area.

The pointer changes to a rectangle, the graphical representation of a state.
6 Click in the upper-left corner of the drawing area to place the state.

The new state appears with a blinking text cursor in its upper-left corner.
7 At the text cursor, type PowerOn to name the state.

Tip If you click away from the text cursor before typing the new name, the cursor
changes to a question mark. Click the question mark to restore the text cursor.

8 Move your pointer to the lower-right corner of the rectangle so it changes to this
symbol:

9 Drag the lower-right corner to enlarge the state as shown:

10 Click the state tool icon again and draw a smaller state named PowerOff at the
bottom of the drawing area, like this:

 Implementing the States to Represent Operating Modes

4-7

11 Save the chart by selecting File > Save in the Stateflow Editor, but leave the chart
open for the next exercise.

Adding and Configuring Parallel States

In “Determining the States to Define” on page 4-3, you learned that FAN1, FAN2, and
SpeedValue will be represented by parallel (AND) substates of the PowerOn state.
Parallel states appear graphically as rectangles with dashed borders.

In this set of exercises, you will learn how to:

• Assign parallel decomposition to PowerOn so its substates can be activated
concurrently.

Recall that the decomposition of a state determines whether its substates will be
exclusive or parallel.

• Add parallel substates to a state in the chart.

4 Defining the States for Modeling Each Mode of Operation

4-8

• Set the order of execution for the parallel substates.

Even though parallel states can be activated concurrently, they execute in a
sequential order.

Setting Parallel Decomposition

Follow these steps:

1 In the Air Controller chart, right-click inside PowerOn.

A submenu opens, presenting tasks you can perform and properties you can set for
the selected state.

2 In the submenu, select Decomposition > AND (Parallel).
3 Save the model Stage2States, but leave the chart open for the next exercise.

Adding the Fan States

Follow these steps:

1 Left-click the state tool icon in the Stateflow Editor and place two states inside the
PowerOn state.

Tip Instead of using the state tool icon to add multiple states, you can right-click
inside an existing state and drag a copy to a new position in the chart. This shortcut
is convenient when you need to create states of the same size and shape, such as the
fan states.

2 Notice the appearance of the states you just added.

The borders of the two states appear as dashed lines, indicating that they are
parallel states. Note also that the substates display numbers in their upper-right
corners. These numbers specify the order of execution. Although multiple parallel
(AND) states in the same chart are activated concurrently, the chart must determine
when to execute each one during simulation.

3 Name the new substates FAN1 and FAN2.

You have created hierarchy in the Air Controller chart. PowerOn is now a superstate
while FAN1 and FAN2 are substates. Your chart should look something like this:

 Implementing the States to Represent Operating Modes

4-9

Note Your chart might not show the same execution order for parallel substates
FAN1 and FAN2. The reason is that, by default, Stateflow software orders parallel
states based on order of creation. If you add FAN2 before FAN1 in your chart, FAN2
moves to the top of the order. You will fine-tune order of activation in a later
exercise, “Setting Explicit Ordering of Parallel States” on page 4-11.

Tip If you want to move a state together with its substates — and any other
graphical objects it contains — double-click the state. It turns gray, indicating that
the state is grouped with the objects inside it and that they can be moved as a unit.
To ungroup the objects, double-click the state again.

4 Save the model Stage2States, but leave the chart open for the next exercise.

Adding the SpeedValue State

Recall that SpeedValue acts as an observer state, which monitors the status of the FAN1
and FAN2 states. To add the SpeedValue state, follow these steps:

4 Defining the States for Modeling Each Mode of Operation

4-10

1 Add another substate to PowerOn under FAN1 and FAN2, either by using the state
tool icon or copying an existing state in the chart.

You might need to resize the substate to prevent overlap with other substates, but
remain within the borders of PowerOn.

2 Name the state SpeedValue.

Like FAN1 and FAN2, SpeedValue appears as a parallel substate because its parent,
the superstate PowerOn, has parallel decomposition.

3 Save the model Stage2States, but leave the chart open for the next exercise,
“Setting Explicit Ordering of Parallel States” on page 4-11.

Setting Explicit Ordering of Parallel States

Recall that, by default, Stateflow software assigns execution order of parallel states
based on order of creation in the chart. This behavior is called explicit ordering. In this
exercise, you will set the execution order explicitly for each parallel state in your chart.

 Implementing the States to Represent Operating Modes

4-11

1 In the Stateflow Editor, select File > Model Properties > Chart Properties.
2 In the Chart properties dialog box, verify that the check box User specified state/

transition execution order is selected and click OK.

4 Defining the States for Modeling Each Mode of Operation

4-12

Note This option also lets you explicitly specify the order in which transitions
execute when there is a choice of transitions to take from one state to another. This
behavior does not apply to the Air Controller chart because it is deterministic: for
each exclusive (OR) state, there is one and only one transition to a next exclusive
(OR) state. You will learn more about transitions in “Drawing the Transitions
Between States” on page 6-4.

3 Assign order of execution for each parallel state in the Air Controller chart:

a Right-click inside each parallel state to bring up its state properties submenu.
b From the submenu, select Execution Order and make these assignments:

For State: Assign:
FAN1 1
FAN2 2
SpeedValue 3

Here is the rationale for this order of execution:

• FAN1 should execute first because it cycles on at a lower temperature than
FAN2.

• SpeedValue should execute last so it can observe the most current status of
FAN1 and FAN2.

4 Save the model Stage2States, but leave the chart open for the next exercise,
“Adding the On and Off States for the Fans” on page 4-13.

Adding the On and Off States for the Fans

In this exercise, you will enter the on and off substates for each fan. Because fans cannot
cycle on and off at the same time, these states must be exclusive, not parallel. Even
though FAN1 and FAN2 are parallel states, their decomposition is exclusive (OR) by
default. As a result, any substate that you add to FAN1 or FAN2 will be an exclusive (OR)
state.

Follow these steps:

1 Add two substates inside FAN1 and FAN2.
2 Resize the substates to fit within the borders of FAN1 and FAN2.

 Implementing the States to Represent Operating Modes

4-13

3 In each fan state, name one substate On and name the other Off.

Your Air Controller chart should now look something like this:

4 Save the model Stage2States.

Where to go next. Now you are ready to specify the actions that execute when a state
is active. See “Implementing State Actions” on page 5-2.

4 Defining the States for Modeling Each Mode of Operation

4-14

Defining State Actions and Variables

5
Decide how to

trigger the chart

6
Simulate
the chart

7
Debug

the chart

1
Define the
interface

to Simulink

4
Define the
transitions

between states

2
Define the states
for modeling each
mode of operation

3
Define

state actions
and variables

In phase 3 of this workflow, you define state actions and variables.

5

Implementing State Actions
In this section...
“Build It Yourself or Use the Supplied Model” on page 5-2
“Design Considerations for Defining State Actions and Variables” on page 5-2
“Writing an Entry Action” on page 5-4
“Writing a During Action” on page 5-5

Build It Yourself or Use the Supplied Model
To implement the state actions yourself, work through the exercises in this section.
Otherwise, open the supplied model to see how the actions should appear in the states.
Enter this command at the MATLAB prompt:
addpath(fullfile(docroot, 'toolbox', 'stateflow', 'gs', 'examples'))
Stage3Actions

Design Considerations for Defining State Actions and Variables
The following sections describe the decisions you make for defining state actions and
variables.

Deciding Whether to Use State Variables

At this stage of the workflow for developing Stateflow charts, you must determine if any
of your states require local or persistent variables. If so, you define these data elements
using the Stateflow Editor or the Model Explorer, as described in “Add Stateflow Data”
in the Stateflow User's Guide.

The states in the Air Controller chart do not require local or persistent data, only the
input and output data that you defined in “Defining the Inputs and Outputs” on page 3-8.

Deciding Whether to Use State Actions

During simulation of a Stateflow chart, states can perform actions while they are active.
Often, actions are used to manipulate data, using a variety of constructs such as binary,
bitwise, unary, assignment, and type cast operators.

When building the Air Controller chart, you need to determine whether any states
should perform actions. Some charts do not use state actions at all, but instead perform

5 Defining State Actions and Variables

5-2

actions only during the transitions from state to state. Other charts require both types of
state actions.

For the Air Controller chart, think about whether data values need to be initialized or
modified during any of its modes of operation. Recall that the chart receives the air
temperature of the plant as the input temp from the Physical Plant subsystem. The chart
then uses this value to activate fans if necessary to cool the air. Based on how many fans
are running, the chart sets a value that indicates speed of airflow, which it sends at each
time step to the Simulink subsystem as the output airflow. The Air Controller does not
modify the value of temp, but does need to update the value of airflow.

The next consideration is when to update, and for that matter, initialize the value of
airflow. If the when translates to a mode of operation, the action should likely be
performed by the state that represents that mode of operation. Here is the analysis for
the Air Controller chart:
Action When How
Initialize airflow to 0. Before simulation Set an initial value when you first

define airflow (as you did in
“Defining the Inputs and Outputs”
on page 3-8).

Set airflow to 0. Whenever power is off Add an action in the state
PowerOff.

Update airflow to 0, 1, or
2, based on how many
fans are running.

Whenever power is on Add an action in the state
SpeedValue, which becomes active
concurrently with FAN1 and FAN2
when the state PowerOn is active.

Deciding the Type of State Action to Use

States perform actions at different phases of their execution cycle from the time they
become active to the time they become inactive. Three basic state actions are:
Type of Action When Executed How Often Executed While State Is

Active
Entry When the state is entered

(becomes active)
Once

 Implementing State Actions

5-3

Type of Action When Executed How Often Executed While State Is
Active

During While the state is active and no
valid transition to another state
is available

At every time step

Exit Before a transition is taken to
another state

Once

For example, you can use entry actions to initialize data, during actions to update
data, and exit actions to configure data for the next transition. (There are other types of
state actions, but they involve concepts that go beyond the scope of this guide. For more
information, see “Syntax for States and Transitions”.)

Based on the requirements in “Deciding Whether to Use State Actions” on page 5-2, you
will write the following state actions for the Air Controller chart:

• Entry action in state PowerOff to set airflow to 0
• During action in state SpeedValue to calculate the value of airflow at every time

step

Writing an Entry Action

The syntax for entry actions is

entry:one or more actions;
en:one or more actions;

To write the entry action for PowerOff, follow these steps:

1 Open the model Stage2States — either the one you created in the previous
exercises or the supplied model for stage 2.

To open the supplied model, enter the following command at the MATLAB prompt:
addpath(fullfile(docroot, 'toolbox', 'stateflow', 'gs', 'examples'))
Stage2States

2 Save the model as Stage3Actions in your local work folder.
3 In Stage3Actions, double-click the Air Controller block to open the Stateflow

chart.

5 Defining State Actions and Variables

5-4

4 Click inside the PowerOff state after the last letter of its name label to get a
blinking text cursor.

5 Press the Enter key and type

entry: airflow = 0;

Your chart should look like this:

6 Save Stage3Actions, but leave the chart open for the next exercise.

Writing a During Action

The syntax for during actions is

during:one or more actions;
du:one or more actions;

The during action for SpeedValue uses a Boolean expression to determine whether
zero, one, or two fans are running at each time step.

 Implementing State Actions

5-5

To write the during action for SpeedValue, follow these steps:

1 Click inside the SpeedValue state after the last letter of its name label to get a
blinking text cursor.

2 Press the Enter key and type

during: airflow = in(FAN1.On) + in(FAN2.On);

Your chart should look like this:

The Boolean expression in(FAN1.On) is true — and its value equals 1 — if the On
state of FAN1 is active. If FAN1 is not on — that is, its Off state is active or power is
off — then in(FAN1.On) equals 0. Similarly, the value of in(FAN2.On) represents
whether FAN2 is on or off. Therefore, the sum of these Boolean expressions indicates
whether 0, 1, or 2 fans are operating during each time step.

3 Save the model Stage3Actions.

5 Defining State Actions and Variables

5-6

Where to go next. Now you are ready to specify conditions for when state-to-state
transitions occur. See “Adding the Transitions” on page 6-2.

 Implementing State Actions

5-7

Defining Transitions Between States

2
Define the states
for modeling each
mode of operation

6
Simulate
the chart

7
Debug

the chart

1
Define the
interface

to Simulink

4
Define the
transitions

between states

5
Decide how to

trigger the chart

3
Define

state actions
and variables

In phase 4 of this workflow, you define the transitions between states.

6

Adding the Transitions
In this section...
“Build It Yourself or Use the Supplied Model” on page 6-2
“Design Considerations for Defining Transitions Between States” on page 6-2
“Drawing the Transitions Between States” on page 6-4
“Adding Default Transitions” on page 6-7
“Adding Conditions to Guard Transitions” on page 6-10
“Adding Events to Guard Transitions” on page 6-11

Build It Yourself or Use the Supplied Model
To add the transitions yourself, work through the exercises in this section. Otherwise,
open the supplied model to see how the transitions should appear in the chart. Enter this
command at the MATLAB prompt:
addpath(fullfile(docroot, 'toolbox', 'stateflow', 'gs', 'examples'))
Stage4Transitions

Design Considerations for Defining Transitions Between States
The following sections describe the decisions you make for defining state transitions.

Deciding How and When to Transition Between Operating Modes

Transitions create paths for the logic flow of a system from one state to another. When a
transition is taken from state A to state B, state A becomes inactive and state B becomes
active.

Transitions have direction and are represented in a Stateflow chart by lines with
arrowheads. Transitions are unidirectional, not bidirectional. You must add a transition
for each direction of flow between two states.

Exclusive (OR) states require transitions. Recall that no two exclusive states can be
active at the same time. Therefore, you need to add transitions to specify when and
where control flows from one exclusive state to another.

Typically, parallel (AND) states do not require transitions because they execute
concurrently.

6 Defining Transitions Between States

6-2

The Air Controller chart models a system in which power can cycle on and off and, while
power is on, fans can cycle on and off. Six exclusive (OR) states represent these operating
modes. To model this activity, you need to add the following transitions between
exclusive (OR) states:

• PowerOff to PowerOn
• PowerOn to PowerOff
• FAN1.Off to FAN1.On
• FAN1.On to FAN1.Off
• FAN2.Off to FAN2.On
• FAN2.On to FAN2.Off

Deciding Where to Place Default Transitions

Good design practice requires that you specify default transitions for exclusive (OR)
states at each level of hierarchy. Default transitions indicate which exclusive (OR) state
is to be active when there is ambiguity between two or more exclusive (OR) states at the
same level in the Stateflow hierarchy. There are three such areas of ambiguity in the Air
Controller chart:

• When the chart wakes up, should power be on or off?
• When FAN1 becomes active, should it be on or off?
• When FAN2 becomes active, should it be on or off?

In each case, the initial state should be off so you will add default transitions to the
states PowerOff, FAN1.Off, and FAN2.Off.

Deciding How to Guard the Transitions

Guarding a transition means specifying a condition, action, or event that allows the
transition to be taken from one state to another. Based on the design of the Air
Controller chart, here are the requirements for guarding the transitions from one
exclusive operating mode to another:
Transition When Should It Occur? How to Guard It
PowerOff to PowerOn At regular time intervals Specify an edge-triggered

eventPowerOn to PowerOff

 Adding the Transitions

6-3

Transition When Should It Occur? How to Guard It
FAN1.Off to FAN1.On When the temperature of

the physical plant rises
above 120 degrees

Specify a condition based on
temperature value

FAN1.On to FAN1.Off When the temperature of
the physical plant falls
below 120 degrees

FAN2.Off to FAN2.On When the temperature rises
above 150 degrees, a
threshold indicating that
first fan is not providing the
required amount of cooling

FAN2.On to FAN2.Off When the temperature falls
below 150 degrees

Drawing the Transitions Between States

In “Design Considerations for Defining Transitions Between States” on page 6-2, you
learned that the following transitions occur in the Air Controller chart:

• Power for the control system can cycle on and off.
• Each fan can cycle on and off.

You will model this activity by drawing transitions between the PowerOn and PowerOff
states and between the On and Off states for each fan. Follow these steps:

1 Open the model Stage3Actions — either the one you created in the previous
exercises or the supplied model for stage 3.

To open the supplied model, enter the following command at the MATLAB prompt:
addpath(fullfile(docroot, 'toolbox', 'stateflow', 'gs', 'examples'))
Stage3Actions

2 Save the model as Stage4Transitions in your local work folder.
3 In Stage4Transitions, double-click the Air Controller block to open the Stateflow

chart.

The chart opens on your desktop.

6 Defining Transitions Between States

6-4

4 Draw transitions between the PowerOff to PowerOn states:

a Move your pointer over the top edge of PowerOff until the pointer shape
changes to crosshairs.

b Hold down the left mouse button, drag your pointer to the bottom edge of
PowerOn, and release the mouse.

You should see a transition pointing from PowerOff to PowerOn:

c Follow the same procedure to draw a transition from PowerOn to PowerOff.

Your chart should now look like this:

 Adding the Transitions

6-5

5 Follow the procedure described in step 3 to draw the following transitions between
the Off and On states for each fan:

• Transition from Off to On in FAN1
• Transition from On to Off in FAN1
• Transition from Off to On in FAN2
• Transition from On to Off in FAN2

Your chart should now look like this:

6 Defining Transitions Between States

6-6

6 Save Stage4Transitions, but leave the chart open for the next exercise.

Adding Default Transitions
In “Deciding Where to Place Default Transitions” on page 6-3, you learned that you need
to add default transitions to PowerOff, FAN1.Off, and FAN2.Off. Follow these steps:

1 In the Stateflow Editor, left-click the default transition icon in the object palette:

2 Move your pointer into the drawing area.

The pointer changes to a diagonal arrow.
3 Place your pointer at the left edge of the PowerOff state.
4 When the arrow becomes orthogonal to the edge, release the mouse button.

The default transition attaches to the PowerOff state. It appears as a directed line
with an arrow at its head and a closed tail:

 Adding the Transitions

6-7

5 Repeat the same procedure to add default transitions at the top edges of FAN1.Off
and FAN2.Off.

Your chart should now look like this:

6 Defining Transitions Between States

6-8

Tip The location of the tail of a default transition determines the state it activates.
Therefore, make sure that your default transition fits completely inside the parent of
the state that it activates. In the Air Controller chart pictured above, notice that the
default transition for FAN1.Off correctly resides inside the parent state, FAN1. Now
consider this chart:

 Adding the Transitions

6-9

In this example, the tail of the default transition resides in PowerOn, not in FAN1.
Therefore, it will activate FAN1 instead of FAN1.Off.

6 Save Stage4Transitions, but leave the chart open for the next exercise.

Adding Conditions to Guard Transitions

Conditions are expressions enclosed in square brackets that evaluate to true or false.
When the condition is true, the transition is taken to the destination state; when the
condition is false, the transition is not taken and the state of origin remains active.

As you learned in “Deciding How to Guard the Transitions” on page 6-3, the fans cycle on
and off depending on the air temperature. In this exercise, you will add conditions to the
transitions in FAN1 and FAN2 that model this behavior.

Follow these steps:

1 Click the transition from FAN1.Off to FAN1.On.

The transition appears highlighted and displays a question mark (?).
2 Click next to the question mark to display a blinking text cursor.
3 Type the following expression:

[temp >= 120]

You may need to reposition the condition for readability. Click outside the condition,
then left-click and drag the condition expression to a new location.

6 Defining Transitions Between States

6-10

4 Repeat these steps to add the following conditions to the other transitions in FAN1
and FAN2:
Transition Condition
FAN1.On to FAN1.Off [temp < 120]
FAN2.Off to FAN2.On [temp >= 150]
FAN2.On to FAN2.Off [temp < 150]

Your chart should look like this:

5 Save Stage4Transitions, but leave the chart open for the next exercise.

Adding Events to Guard Transitions

Events are nongraphical objects that trigger activities during the execution of a Stateflow
chart. Depending on where and how you define events, they can trigger a transition to
occur, an action to be executed, and state status to be evaluated. In this exercise, you will
define an event that triggers transitions.

 Adding the Transitions

6-11

As you learned in “Deciding How to Guard the Transitions” on page 6-3, the control
system should power on and off at regular intervals. You model this behavior by first
defining an event that occurs at the rising or falling edge of an input signal, and then
associating that event with the transitions between the PowerOn and PowerOff states.

Follow these steps to define an edge-triggered event and associate it with the transitions:

1 In the Stateflow Editor, add an input event by selecting Chart > Add Inputs &
Outputs > Event Input From Simulink.

The Event properties dialog box opens on your desktop:

Note that the event is assigned to trigger port 1.

6 Defining Transitions Between States

6-12

2 Edit the following properties:
Property What to Specify
Name Change the name to SWITCH.
Trigger Select Either from the drop-down menu so the event can be

triggered by either the rising edge or falling edge of a signal.
3 Click OK to record the changes and close the dialog box.
4 Look back at the model and notice that a trigger port appears at the top of the

Stateflow block:

When you define one or more input events for a chart, Stateflow software adds a
single trigger port to the block. External Simulink blocks can trigger the input
events via a signal or vector of signals connected to the trigger port.

 Adding the Transitions

6-13

5 Back in the Stateflow Editor, associate the input event SWITCH with the transitions:

a Select the transition from PowerOff to PowerOn and click the question mark to
get a text cursor.

b Type the name of the event you just defined, SWITCH.

You might need to reposition the event text for readability. If so, click outside
the text, left-click the text, and drag it to the desired location.

c Repeat these steps to add the same event, SWITCH, to the transition from
PowerOn to PowerOff.

Your chart should now look something like this:

Now that you have associated these transitions with the event SWITCH, the control
system will alternately power on and off every time SWITCH occurs — that is, every
time the chart detects a rising or falling signal edge.

Note that the sf_aircontrol model has already defined the pulse signal SWITCH in
the Signal Builder block at the top level of the model hierarchy:

6 Defining Transitions Between States

6-14

In the next phase of the workflow, you will connect your Stateflow chart to the
SWITCH signal to trigger the transitions between power on and power off.

6 Save Stage4Transitions.

Where to go next. Now you are ready to implement an edge-triggered event to wake
up the chart at regular intervals. See “Implementing the Triggers” on page 7-2.

 Adding the Transitions

6-15

Triggering a Stateflow Chart

2
Define the states
for modeling each
mode of operation

7
Debug

the chart

1
Define the
interface

to Simulink

5
Decide how to

trigger the chart

6
Simulate
the chart

4
Define the
transitions

between states

3
Define

state actions
and variables

In phase 5 of this workflow, you decide how to trigger the chart.

7

Implementing the Triggers
In this section...
“Build It Yourself or Use the Supplied Model” on page 7-2
“Design Considerations for Triggering Stateflow Charts” on page 7-2
“Defining the CLOCK Event” on page 7-3
“Connecting the Edge-Triggered Events to the Input Signals” on page 7-4

Build It Yourself or Use the Supplied Model

To implement the triggers yourself, work through the exercises in this section.
Otherwise, open the supplied model to see how the triggers should appear in the chart.
Enter this command at the MATLAB prompt:
addpath(fullfile(docroot, 'toolbox', 'stateflow', 'gs', 'examples'))
Stage5Trigger

Design Considerations for Triggering Stateflow Charts

A Simulink model can wake up a Stateflow chart by

• Sampling the chart at a specified or inherited rate
• Using a signal as a trigger
• Using one Stateflow chart to drive the activity of another

A signal trigger works best for the Air Controller chart because it needs to monitor the
temperature of the physical plant at regular intervals. To meet this requirement, you will
use a periodic signal to trigger the chart. The source is a square wave signal called
CLOCK, provided by a Signal Builder block in the Simulink model, described in “How the
Stateflow Chart Works with the Simulink Model” on page 2-6. To harness the signal, you
will set up an edge trigger event that wakes the chart at the rising or falling edge of
CLOCK.

The rationale for using an edge trigger in this case is that it uses the regularity and
frequency of the signal to wake up the chart. When using edge triggers, keep in mind
that there can be a delay from the time the trigger occurs to the time the chart begins
executing. This is because an edge trigger causes the chart to execute at the beginning of
the next simulation time step, regardless of when the edge trigger actually occurred

7 Triggering a Stateflow Chart

7-2

during the previous time step. The Air Controller can tolerate this delay, as long as the
edge occurs frequently enough. (For more information about triggering Stateflow charts,
see “Implement Interfaces to Simulink Models” in the Stateflow User's Guide.)

Recall that you already defined one edge-triggered event, SWITCH, to guard the
transitions between PowerOff and PowerOn. You will now define a second edge-
triggered event, CLOCK, to wake up the chart.

Defining the CLOCK Event

To define the CLOCK event, follow these steps:

1 Open the model Stage4Transitions — either the one you created in the previous
exercises or the supplied model for stage 4.

To open the supplied model, enter the following command at the MATLAB prompt:
addpath(fullfile(docroot, 'toolbox', 'stateflow', 'gs', 'examples'))
Stage4Transitions

2 Save the model as Stage5Trigger in your local work folder.
3 In Stage5Trigger, double-click the Air Controller block to open the Stateflow

chart.
4 In the Stateflow Editor, add an input event by selecting Chart > Add Inputs &

Outputs > Event Input From Simulink.
5 In the Event properties dialog box, edit the following fields:

Property What to Specify
Name Change the name to CLOCK.
Trigger Select Either from the drop-down menu so that the rising or

falling edge of a signal can trigger the event.

Because the SWITCH event you created in “Adding Events to Guard Transitions” on
page 6-11 was assigned to trigger port 1, the CLOCK event is assigned to trigger port
2. Nevertheless, only one trigger port appears at the top of the Air Controller block to
receive trigger signals. This means that each signal must be indexed into an array,
as described in “Connecting the Edge-Triggered Events to the Input Signals” on page
7-4.

6 Click OK to record the changes and close the dialog box.

 Implementing the Triggers

7-3

7 Save Stage5Trigger, but leave it open for the next exercise.

Connecting the Edge-Triggered Events to the Input Signals

You need to connect the edge-triggered events to the Simulink input signals in a way
that

• Associates each event with the correct signal
• Indexes each signal into an array that can be received by the Air Controller trigger

port

In Stage5Trigger, notice that the two input signals SWITCH and CLOCK feed into a Mux
block where they are joined in an array to a single output. SWITCH is a pulse signal and
CLOCK is a square wave. When you connect the Mux to the trigger port, the index of the
signals in the array are associated with the like-numbered ports. Therefore, the SWITCH
signal at the top input port of the Mux triggers the event SWITCH on trigger port 1.
Likewise, the CLOCK signal at the second input port of the Mux triggers the event CLOCK
on trigger port 2.

To connect the Mux to the trigger port, follow these steps:

1 Click the Mux block, hold down the Ctrl key, and click the Air Controller block.

The output signal of the Mux block connects to the input trigger port of the Stateflow
block. Your model should look like this:

7 Triggering a Stateflow Chart

7-4

2 Save Stage5Trigger.

Where to go next. Now you are ready to simulate your chart. See “Setting
Simulation Parameters and Breakpoints” on page 8-2.

 Implementing the Triggers

7-5

Simulating the Chart

2
Define the states
for modeling each
mode of operation

1
Define the
interface

to Simulink

4
Define the
transitions

between states

6
Simulate
the chart

7
Debug

the chart

5
Decide how to

trigger the chart

3
Define

state actions
and variables

In phase 6 of this workflow, you simulate the chart to test its behavior. During
simulation, you can animate Stateflow charts to highlight states and transitions as they
execute.

8

Setting Simulation Parameters and Breakpoints
In this section...
“Prepare the Chart Yourself or Use the Supplied Model” on page 8-2
“Checking That Your Chart Conforms to Best Practices” on page 8-2
“Setting the Length of the Simulation” on page 8-3
“Configuring Animation for the Chart” on page 8-4
“Setting Breakpoints to Observe Chart Behavior” on page 8-5
“Simulating the Air Controller Chart” on page 8-5

Prepare the Chart Yourself or Use the Supplied Model

To prepare the chart for simulation yourself, work through the exercises in this section.
Otherwise, open the supplied model to see how simulation parameters should appear.
Enter this command at the MATLAB prompt:
addpath(fullfile(docroot, 'toolbox', 'stateflow', 'gs', 'examples'))
Stage6Simulate

Checking That Your Chart Conforms to Best Practices

Before starting a simulation session, you should examine your chart to see if it conforms
to recommended design practices:

• A default transition must exist at every level of the Stateflow hierarchy that contains
exclusive (OR) states (has exclusive [OR] decomposition). (See “Deciding Where to
Place Default Transitions” on page 6-3.)

• Whenever possible, input data objects should inherit properties from the associated
Simulink input signal to ensure consistency, minimize data entry, and simplify
maintenance of your model. Recall that in “Defining the Inputs and Outputs” on page
3-8, you defined the input temp to inherit its size and type from the Simulink output
port temp, which provides the input value to the Air Controller chart.

• Output data objects should not inherit types and sizes because the values are back
propagated from Simulink blocks and may, therefore, be unpredictable. Recall that in
“Defining the Inputs and Outputs” on page 3-8, you specified the data type as uint8
and the size as scalar (the default). (See “Avoid inheriting output data properties from
Simulink blocks” in the Stateflow User's Guide.)

8 Simulating the Chart

8-2

Tip You can specify data types and sizes as expressions in which you call functions that
return property values of other variables already defined in Stateflow, MATLAB, or
Simulink software. Such functions include type and fixdt. For more information, see
“Enter Expressions and Parameters for Data Properties” in the Stateflow User's Guide.

Setting the Length of the Simulation

To specify the length of the simulation, follow these steps:

1 Open the model Stage5Trigger — either the one you created in the previous
exercises or the supplied model for stage 5.

To open the supplied model, enter the following command at the MATLAB prompt:
addpath(fullfile(docroot, 'toolbox', 'stateflow', 'gs', 'examples'))
Stage5Trigger

2 Save the model as Stage6Simulate in your local work folder.
3 Double-click Air Controller to open the chart.
4 Check the settings for simulation time:

a In the Stateflow Editor, select Simulation > Model Configuration
Parameters.

The following dialog box opens:

 Setting Simulation Parameters and Breakpoints

8-3

b Click Solver in the left Select pane if it is not already selected.

Under Simulation time on the right, note that the start and stop times have
been preset for you. You can adjust these times later as you become more
familiar with the run-time behavior of the chart.

c Keep the preset values for now and click OK to close the dialog box.
5 Leave the chart open for the next exercise.

Configuring Animation for the Chart

8 Simulating the Chart

8-4

When you simulate a Simulink model, Stateflow animates charts to highlight states and
transitions as they execute. Animation provides visual verification that your chart
behaves as you expect. Animation is enabled by default to Fast. Slowing it down gives
you more time to view the execution order of objects. To configure animation for your
simulation session, follow these steps:

1 Set the speed of animation by selecting Simulation > Stateflow Animation >
Medium. This slows the animation down.

2 Leave the Air Controller chart open for the next exercise.

Setting Breakpoints to Observe Chart Behavior

In this exercise, you will learn how to set breakpoints to pause simulation during key
run-time activities so you can observe the behavior of your chart in slow motion. You will
set the following breakpoints:
Breakpoint Description
Chart Entry Simulation halts when the Stateflow chart wakes up.
State Entry Simulation halts when a state becomes active.

You will also learn how to examine data values when simulation pauses.

Follow these steps:

1 Right click in the chart, and select Set Breakpoint on Chart Entry.
2 For each state PowerOn and PowerOff, right click in the state, and select Set

Breakpoints > On State Entry.

Simulating the Air Controller Chart

In this exercise, you will simulate the Air Controller chart. During simulation, you will
change breakpoints and observe data values when execution pauses. Follow these steps.

1 In Stage6Simulate, open the Scope block. Position the Scope block and the Air
Controller chart so they are visible on your desktop.

2 Start simulation by selecting Simulation > Run.

 Setting Simulation Parameters and Breakpoints

8-5

After the simulation target is built, the chart appears with a gray background,
indicating that simulation has begun. Simulation continues until it reaches the first
breakpoint, when the Air Controller chart wakes up.

3 Right click a transition in the state FAN1, and select Add to watch > (Input) temp.
This adds the variable temp to the Stateflow Breakpoints and Watch window.

4 Right click in the state SpeedValue, and select Add to watch > (Output) airflow.
This adds the variable airflow to the Stateflow Breakpoints and Watch window.

Tip You can also view data values from the MATLAB command line at simulation
breakpoints. Here's how to do it:

a When simulation pauses at a breakpoint, click in the MATLAB command line
and press the Enter key.

The MATLAB Command Window displays a debug>> prompt.
b At the prompt, type the name of the data object.

The MATLAB Command Window displays the value of the data object.

5 View the values of temp and airflow.

Note that temp is 70 (below the threshold for turning on FAN1) and airflow is 0
(indicating that no fans are running).

6 Resume simulation by clicking the Continue button.

Simulation continues until the next breakpoint, activation of the PowerOff state,
which appears highlighted in the chart (as part of animation).

8 Simulating the Chart

8-6

The default transition activates PowerOff after the chart wakes up.
7 In the Breakpoints tab of the Stateflow Breakpoints and Watch Data window, clear

the breakpoint on Chart Entry. Hover the cursor over the name of the breakpoint,

and select the delete button, . Continue simulation.

Simulation continues to the next breakpoint, the activation of the PowerOn state:

 Setting Simulation Parameters and Breakpoints

8-7

Note that temp has risen to over 157 degrees. The Scope displays the temperature
pattern:

8 Simulating the Chart

8-8

8 To speed through the rest of the simulation, clear all breakpoints, and continue
simulation.

 Setting Simulation Parameters and Breakpoints

8-9

Notice that FAN1 continues to cycle on and off as temp fluctuates between 119 and
120 degrees until power cycles off at 500 seconds. After power cycles off, the fans
stop running and temp begins to rise unchecked until simulation reaches stop time
at 600 seconds.

The Scope captures this activity:

8 Simulating the Chart

8-10

Note This display should look the same as the Scope after running the prebuilt
model in “Running the Model” on page 2-9.

 Setting Simulation Parameters and Breakpoints

8-11

9 Save Stage6Simulate, and close all other windows and dialog boxes.

8 Simulating the Chart

8-12

Debugging the Chart

2
Define the states
for modeling each
mode of operation

1
Define the
interface

to Simulink

4
Define the
transitions

between states

5
Decide how to

trigger the chart

7
Debug

the chart

6
Simulate
the chart

3
Define

state actions
and variables

In phase 7 of this workflow, you debug the chart. In “Setting Simulation Parameters and
Breakpoints” on page 8-2, you learned how to set breakpoints and watch data. In this
chapter, you will learn how Stateflow software detects errors and provides diagnostic
assistance.

9

Debugging Common Modeling Errors
In this section...
“Debugging State Inconsistencies” on page 9-2
“Debugging Data Range Violations” on page 9-4

Debugging State Inconsistencies

In this exercise, you will introduce a state inconsistency error in your chart and
troubleshoot the problem. Follow these steps:

1 Open the model Stage6Simulate — either the one you created in the previous
exercises or the supplied model for stage 6.

To open the supplied model, enter the following command at the MATLAB prompt:
addpath(fullfile(docroot, 'toolbox', 'stateflow', 'gs', 'examples'))
Stage6Simulate

2 Save the model as Stage7Debug in your local work folder.
3 Double-click Air Controller to open the chart.
4 Delete the default transition to FAN2.Off by selecting it and pressing the Delete

key.

Removing the default transition will cause a state inconsistency error. (Recall from
“Checking That Your Chart Conforms to Best Practices” on page 8-2 that there must
be a default transition at every level of the Stateflow hierarchy that has exclusive
[OR] decomposition.)

Your chart should look like this:

9 Debugging the Chart

9-2

5 Save the chart, and start simulation.

An error appears in the Diagnostic Viewer. The error indicates that the state FAN2
has no default paths to a substate.

Note The state number in your dialog display can differ from the one pictured above.
6 Locate the offending state in the Air Controller chart, by clicking the link to the state

name.

FAN2 appears highlighted in the chart:

 Debugging Common Modeling Errors

9-3

7 Add back the default transition to FAN2.Off.

The default transition provides an unconditional default path to one of the substates
of FAN2.

8 Simulate the model again.

This time, simulation proceeds without any errors.
9 Save Stage7Debug, and leave the chart open for the next exercise.

Debugging Data Range Violations

In this exercise, you will introduce a data range violation in your chart and troubleshoot
the problem. To enable data range violation checking, set Simulation range checking
in the Diagnostics: Data Validity pane of the Configuration Parameters dialog box to
error.

Follow these steps:

1 In the Air Controller chart, modify the during action in the SpeedValue state by
adding 1 to the computed value, as follows:

during: airflow = in(FAN1.On) + in(FAN2.On) + 1;

9 Debugging the Chart

9-4

Recall that in “Defining the Inputs and Outputs” on page 3-8, you set a limit range of
0 to 2 for airflow. By adding 1 to the computation, the value of airflow will
exceed the upper limit of this range when two fans are running.

2 Start simulation.

Simulation pauses because of an out-of-range data error:

As expected, the error occurs in the during action of SpeedValue because the value
of airflow is out of range.

3 To isolate the problem, double-click the last line in the error message:

Data '#439 (0:0:0)': 'airflow'

The Model Explorer opens on your desktop, allowing you to view the properties of
airflow in the right, read-only pane (read-only because simulation is running).

Note The ID number of the data that appears in the error message can vary from the
value shown.

4 Check the limit range for airflow:

 Debugging Common Modeling Errors

9-5

5 Hover your cursor over airflow to view the value.

airflow = 3

This value exceeds the upper limit of 2.
6 Stop simulation.
7 Restore the during action to its previous code, and then restart simulation for the

model.

9 Debugging the Chart

9-6

The model should simulate with no errors or warnings.

See Also

Related Examples
• “Set Breakpoints to Debug Charts”
• “Watch Stateflow Data Values”

 See Also

9-7

